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View of the Next Hour:

e Part 1: Background on distribution shifts
o What is distribution shift?
o Why are distribution shifts (currently) problematic?
e Part 2: Detecting and understanding distribution shifts

o So what are we doing about distribution shifts?

o Looking forward, can we utilize distribution shifts to help us learn better?
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About me :)

e Ph.D. Student in Computer Engineering @ Purdue

University

e Belong to the Probabilistic and Understandable

Machine Learning Lab lead by Dr. David Inouye

e Outside of research, | enjoy:
o ® hiking/backpacking,
o @@ mountain biking
o ¥ spending time with friends and family

o X figuring out how things work
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My research path:

e My main research interest is:

“How can we build generalizable Machine Learning models for deployment to dynamic

environments seen in the wild?”
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Part 1:
What are Distribution Shifts?

How the real world breaks fundamental ML assumptions.
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A distribution shift is when a data distribution
changes from what is expected

e In machine learning, a distribution shift is
when a testing distribution no longer

matches the training distribution

Ptest (x) + Ptrain (x)
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Most ML assumes train/test data distributions match

e Fundamental to most ML is the

I.I.d. assumption:

1. Independent: All samples x are unrelated to Dipieal Assumod b Baradiom

each other
o, P(x)
P(x; | x;) =P(x;) Vi#i

Unknown
2. ldentically Distributed: All samples x come
from the same distribution Perain ’ m Prost
X1, X2, o, Xy
Prrain(X) = Prest (X) x
e The i.i.d. assumption allows our ML N l l
1
- miny, - [£(hGe), f0)] ~ Ep,,, [£(h08), FGO)]
model h to generalize to P, NL vest

Yn y

PU RDUE Figure Inspired from Figure 4.3, of [2] 7
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Distribution shift violates this core assumption in ML

e Distribution shift usually breaks the TyoicalAssumed A Shifted ML Paradigm
identically distributed assumption Unknown Unknown J29MNE9)

e Under distribution shift, the 1 Poye (%) # Prge(2) l

patterns learned by h might not , o -
train Ptest
hOId Under Ptgt(X) X1, X2, ey XN ‘ u x
A l l

1 N
minhNZ[L(h(xn)'f(xn))] X Ep,,,[L(h(x), f ()]




Distribution shifts are classically broken down to

three types

e In a supervised regime, we can write the joint distribution of data and labels as:
P(x,y) = P(x|ly)P(y) -or- P(x,y)=P(y|x)P(x)

e Covariate Shift: Pros: (VX)) = Prrain(¥1%), but Preg(X) # Prrgin ()

o EX: P,.:(x) has more people over 60, but the per-person probability of polio has not changed

e Label Shift: Ptest(xl:V) = Pirain(x|y), but Ptest()’) * Ptrain(:V)

o EX: Everyone in P,,.; has been vaccinated. So, similar people still get polio, but it is less frequent

® Concept Drift: Ptest(y) — Ptrain(y), but Ptest(xIY) * Ptrain(xly)

o Ex: Polio has mutated in P, ,, to affect younger instead of older people, but the fotal risk is the same
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Distribution shifts are ubiquitous

e Any changes in a current data generating environment can cause shifts

e Applying a model to a new domain is almost always a shift

Input (x) camera trap photo tissue slide cellimage  satellite image satellite image wheat image molecular graph online comment product review
Prediction (y) ~ animal species tumor perturbed gene  land use asset wealth wheat head bbox  bioassays toxicity sentiment
user

Domain (d) camera hospital batch time, region  country, ru/ur location, time scaffold demographic

code
autocomplete

git repo

What do Black

Overall a solid

import numpy

and LGBT package that as np
S | people have to has a good
ource example do with bicycle quality of
licensing? construction
for the price. norm=np.___
As a Christian, | *loved* my import
| will not be French press, subprocess
patronizing any it's so perfect as sp
Target example of those and came with
businesses. all this fun p=sp.Popen()
- : 1 stuff! stdout=p.__
Exempla nford WILDS datasets overview [1]
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Face mask vs. Face mask?

xample: Google Search Results

20 hours ago

# 1cayag0
Karat Face Mask - 50 ct

Face Masks, Organic Cotton, ..
m- Ou..

Face masks wonit help you avoid illnes...

Google Trends

businessinsider.com

Premium Ear-loop FACE MAS.
atomodental.com - In stock

Young woman with bea..

il > - e
The beauty of face masks - Saga
saga.cok dissolve.com - In stock

Korean Hot Sales High Quality...
magictowel en. made-in-china.co__

e
White Bathrobe With Ap.

123rf.com

4 Ay
Interest over time

Korean Beauty Face Mask | Su...
suremeal.com - In stock

® face mask

Dec 15,2019

Aug 11,2019

Apr7,2019

United States. Past 12 months. Web Search.
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Part 2.
Living With Distribution Shifts

Detecting the problem and trying to answer what happened?
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Detecting distribution shifts — common methods

e Distribution Shift detection answer the binary question: “Has a shift occurred?”

e Detecting distribution shift is a well-studied topic [3], most methods involve

either:

1. Statistical Hypothesis testing between Py, and P;g;:
O (P, Ptgt)z e, ¢ := statistical divergence function (e.g., KL-divergence) and P :=
a density model of of the data (e.g., a normalizing flow)

2. Training a domain classifier model f to classify between xg,.. and X¢;:
IEXNPtgt[f(x)] >€, X = an estimate of what samples from P, will look like

PURDUE
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We can use feature shift detection to localize the
problem to specific features

Feature Shift Toy Problem

e To detect feature shift [4], we define a conditional

distribution hypothesis test:

0 Hop:Vx_; € X_j, Poc(xj|2_;) = Prye(xj]x_;)
o} HA:ELX'_]' € x_j' P;rc(lex—j) * ptgt(xj|x—j)

® Feature shift can happen in two stages:

o Detection: Do the conditional distributions of Ptgt differ ZE ; > -

from the conditional distribution P,,..? n( ) 4 Py

N ) ) p( Iy - 2 yr )

o Localization: Which feature(s) have caused this Y ) A 1 e | e
difference? p( ) A i P
PUalxs) Al ) A |
Plxslx-s) S | ooty | N

PURDUE AT~ >~
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Feature Shift Detection is fast with Fisher divergence

e Fisher divergence test statistic based on the score function, ¥ := V, log(p(x))

p()

¢Flsher(p: q) = p(x)+q(x)[”l/)(x p) l,b(x CI)” ] p(x)+q(x)

e Can compute multiple feature test statistics simultaneously

© Qrisher (pxj|x_j: CIxj|x_j) = [Ep(x)+q(x) [(l/)(x, p) —Y(x; Q))Z]j

o Only a single forward and backward pass is needed to compute all conditional score
functions, which is already done when updating a density model, P

e Feature Shift tells us: “Has a shift occurred?” + “What set of features shifted?”

PURDUE



A distribution shift has been detected...now what?
We need to know more to respond effectively

e Problem: Once a shift has been detected, an operator needs to figure out
what has changed in order to effectively respond

e Current simple approach: See how the means have shifted, pig.c — tge

4 - A
. . . ] T ,/' \) ,,,..\
o Gives a rough approximation of shift ! Pegt, . Peo y
’-~ L
] S \ 4 ] 9ty
\ P \\ ~=7 \ P \\ ‘\_/
N Fsre ) VS. \\src )
. . . . . ~
o However, this can miss important information: — > — —
Mean shift explanation Full shift explanation

e Our goal: Aid the operator by explaining how P;,.. shifted to P,
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Distribution shifts can be explained by hypothesizing

how to map .. to Py,

e Given two distributions Py, P.g;: jroveay o

| %, i
o atransport map T(-), is a function which moves a sl | ’ ¥ \\
point from P, to Prge, such that Typ =~ Poc W ’

. . . . = v'vv]v,' plas
e [f T is interpretable, it can explain how P, i3 bf;?‘ A
{0 v:A: 'x',v M V,':
] +ENs: Siah, . Z
Shlfted to Ptgt . :g::_:;—‘TKKA};‘A: A . 000‘::' ¢
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We can leverage prior Optimal Transport work to find good
iInterpretable mappings

e Optimal Transport finds a minimum cost mapping T, that aligns two distributions [10]

e By relaxing alignment and restricting our possible mappings to be interpretable we
get intrinsically interpretable transport Ty

Tyr = argminTGQint [Eptmin [C(x, T(x))] + A d)(PT(X); Ptest)
where Q;,; = {T: s.t.Tis interpretable}, c(,) is a cost function (e.g., £,), and ¢ is a divergence

e T,;r gives us a mapping which is faithful (P y) = Pis), interpretable (T € Q;,,), and

simple (minimizes a transport cost)
e ();,. can be defined based on context, or one can use our pre-defined sparse-

feature mappings or cluster-based mappings [5]

PURDUE



T,;+ can be used to gain actionable insights from
explanations of complex shifts

e Using our k-cluster mappings Q¥,.,.., we can see how heterogenous

o
] o . . P
groups (clusters) moved differently under a distribution shift o~
Qk = {T:T(x) = x + [A].}, where A € R%¥, ¢ = [k > *
cluster — U 1(X) =X cs, wnere »C—[] & /
EkxampleleD§ Geploptdatioapsgtiify
e We can use QF ... to compare male and female responses to the
1994 US Census insight (D)
Income is largest
s 7100%8 k - Cluster Explanation (ours), k = 4: Ezsvlzteonr,w and F
% I \ _82/a§.. Hed : [Age: 35.6, Edu: 12.9, Inc: 0.00] Hez, : [Age: 29.7, Edu: 8.9, Inc: 0.03] InsightO'
gl T "5 | Beg ot [Age: 321, Edu: 125, Inc: 0.01] gz ¢z : [Age: 26.3, Edu: 9.0, Inc: 0.00] The inr
E | 40% % difference is
,'_3'5 200/&3, Hcz  :[Age:56.3,Edu: 8.4,Inc:0.13] pcs  :[Age:43.5, Edu: 12.1, Inc: 1.00] largestin M4,
S| ooy t1Age:53.7, Edur 8.7, Inc:0.0] ey s ¢ [Age: 40.2, Edu: 119, Inc: 0.38] mede seed
Total Number of Clusters (k) bachelor’s degree
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Transport Maps can also explain distribution shifts in
high-dimensional regimes (images)
e \When raw features are not semantically meaningful, original i Counterfactual Examples (ours)
. Pd :Pd—>1Pd—>2 Pd—>3 Pd—>4 Pd—>5
but samples are (e.g., images), we can use post-
hoc methods to understand T such as:

Distributional-Counterfactuals := {x, T(x): x ~ Psy¢, T(x) ~ Ptgt}

e \We can use distributional-counterfactuals to explain
how H&E staining of tissue samples change across

multiple hospitals [6]

Using StarGAN [7] to show the difference

PURDUE between tissue samples across 5 hospitals
26
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Take-Aways on Distribution Shifts

e Distribution Shifts are ubiquitous, complex, and problematic for ML

e To combat distribution shifts we need to:
1. Detect a shift has happened
e Perform statistical hypothesis testing between P,,. and Ptgt e.g., check for feature-shift

2. Understand what the distribution shift has changed

e Solve for a distribution shift explanation T and see if the changes are problematic

3. React to the fix the shift

e Possibly retrain models, fix the change in our environment, update training set, etc.

PURDUE o



Part 3:
How to Avoid Problems with
Distribution Shifts

Turning the problem into the solution — methods for domain generalization.

PURDUE
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We can use sets of shifted distributions to build

robust models

. _ . . i i A\
Given: M training domains § = {S;| i = 1,..., M} where §; = {(x},y},i)} i

~
'/

Train Test

Goal:

* Find a model which can achieve a minimum error on an unseen test domain,
7= {5y}

. mhin E(xy)ese., [£(R(x),y)] for some loss function £(-) and Pyy** # Py,

PURDUE
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Taxonomy of DG

Domain randomization ]

Data Adversarial data augmentation

manipulation | T
“Extending S” generation Kernel methodsj

Explicit feature alignment |

F e . . .
Domain-invariant

(Bl tnon Domain adversarial learning)
Domain Representation T me e
generalization | ™ jearing nvariant risk minimization |
“Transforming x” Multi-component analysis]
Disentanglement

Generative modeling )

Ensemble leaming)

eanung Meta-learning)
strategy
“Changing the model”

PU RDUE Image from [8].
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An optimal representation which is invariant across
domains in § should generalize to unseen domains

® Domain adversarial learning

O Adversarial optimization where d discriminates the original domain of g(x), and g finds a
representation which aids the classifier f(g(x)) while fooling the discriminator

O ar%min arg;nax Zﬁil Z(x,y)ESj Ls g (f (9 (x)), J’) + Ly (d (g (x),j))
.9

® Explicit feature alignment

O Alignment of the domain distributions using a shared feature extractor g

©  argmin i dist(94(50), 94(5))) + Tieyres, LF 9, )),

(A) Cow: 0.99, Pasture: (B) No Person: 0.99, Water:
where dist(:,-) is some notion of a distance or statistical divergence metric 0.99, Grass: 0.99, No Person: 0.98, Beach: 0.97, Outdoors:
0.98, Mammal: 0.98 0.97, Seashore: 0.97
O  Common representation functions: kernel methods, batch-instance normalization, neural From: Recognition in Terra Incognita [10]

networks
® |[nvariant risk minimization

O Find a data representation such that the optimal classifier f*(g(x)) is the same across all
environments


https://arxiv.org/pdf/1807.04975.pdf

Feature-disentanglement learns both domain specific
and domain-invariant representations

® Goal: learn function(s) that decompose samples into meaningful
domain invariant g;(x) and domain specific features g, (x)

O

argmings,gi,f IIEx,y L(f(gs(x))r y) + /U:recon([gs(x); gi(x)]' x) +
ALreg (gs (x), gi(x))

® Multi-component analysis

O

O

During training, learn a universal model 6(°) and domain-specific models
Ny M
{9(1)}j=1, and for inference use functional combination of the two

UndoBias: SVM where w(x) = w©@ (x) + w@ (x) where j € {1, ..., M} and
is found via j = d(x), where d finds the domain which x is most likely to
have come from

® Generative modeling

O

PUR

Use VAEs to find a latent space with disentangled representations of
domain information, category information, and other information
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https://arxiv.org/pdf/1710.03077.pdf
https://arxiv.org/pdf/1710.03077.pdf
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Thanks for listening : )

I’'m happy to answer any questions you have now.

If you would prefer to chat after, just email me at: skulinski@purdue.edu , or

you may find answers/more ways to reach me on my website: seankulinski.com
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